발현
#
Find similar titles
- 최초 작성자
- 최근 업데이트
Structured data
- Category
- Analysis
Table of Contents
Expression Study #
Functional genomics의 유전자 발현 연구 분야에도 NGS는 예외 없이 새로운 방향을 제시하면서 Transcriptome 분야를 포함하여 많은 부분에서 PCR이나 마이크로어레이기술을 대체 하고 있다. 이러한 NGS 기술은 분석 대상 종의 서열 정보가 없어도 분석 가능하여, 어떤 생물종도 연구에 이용할 수 있다는 장점을 가지고 있다. 뿐만 아니라 한 번의 시퀀싱으로 수많은 read를 얻는 높은 coverage를 가지기 때문에 단 시간에 적은 비용으로 전체 염기서열을 결정할 수 있는 이점이 있다. 이러한 장점들은 마이크로어레이를 이용한 종전의 분석법에서 나타난 여러 문제점을 보완하면서 다양한 방향으로 연구 수행이 가능하게 하였다. Development stage, stress, tissue와 같이 특정 컨디션에서의 유전자 발현 양상을 보는 것에서부터 조직 특이 유전자 분석, House keeping 유전자 분석, 유전자 발현을 이용한 Ortholog 분석, SNP 분석 그리고 Alternative splicing 분석에 이르기까지 다양한 분야에 걸쳐 분석이 가능하게 되었다.
발현 분석은 언제, 어디서, 어느 정도로 유전자들의 발현 정도를 전사 수준에서 총체적으로 탐색 하는 것을 목적으로 한다. 따라서 원하는 컨디션이 반영된 mRNA를 추출하여 라이브러리를 제작하게 되고, 무작위적으로 시퀀싱 하여 얻어진 서열을 클러스터링하여 발현양을 추정하게 된다.
그림 1. 유전자 발현 패턴 분석. 전사 수준에서의 발현 패턴 분석을 위해 mRNA sequencing을 통해 세포내 유사한 발현 패턴을 보이는 유전자들을 분석
이러한 방법은 기존의 ESTs를 활용한 발현 분석과 동일한 방법으로, 클러스터링 방법 또한 EST 클러스터링과 같이 유전체 서열이 존재하는 경우 References assembly을 수행하여 유전자 영역을 기준으로 클러스터링을 수행하게 되고, 만약 유전체 서열이 존재하지 않을 경우 De novo assembly을 수행 하게 된다. 단 De novo assembly의 경우 assembly의 정확성을 위해 short reads 보다는 Roche 454의 long reads를 이용하는 것이 보다 정확한 결과를 얻을 수 있다.
클러스터링이 완료되면 각 클러스터 별로 포함되어 있는 NGS reads의 개수를 발현 수치 값으로 환산하여 Digital Expression Profile(DEP)를 작성하게 되며 이는 마치 마이크로어레이의 intensity를 이용한 분석법과 같이 분석하게 된다. 이때, 실험적인 바이어스와 생물학적 컨디션을 고려한 다양한 통계적 방법이 이용된다.
Digital Expression Profile (DEP) #
동일한 유전자로 부터 발현된 mRNA의 양은 중복된 NGS reads의 개수를 계산함으로써 알 수 있다. 따라서 클러스터링 과정을 통해 중복된 reads를 동일 유전자에서 유래한 하나의 서열로 만들 수 있고 이렇게 형성된 unigene의 reads count profile은 결국 mRNA의 expression profile과 동일시 볼 수 있다. 여러 조직에서 다양한 발현 양을 보이는 유전자의 경우 각 조직마다의 발현양은 시퀀싱된 reads 개수를 계산하는 방법으로 Digital Expression Profile(DEP)의 초기 데이터인 Cluster member matrix를 만들 수 있다(그림 2). 앞서 언급한 마이크로어레이 분석에서도 Intensity value를 실제 분석에 앞서 다양한 정규화과정(Normalization)을 수행하는 것과 같이 DEP에서도 두 단계의 정규화과정을 통해 최종적인 DEP를 완성한다.
그림2. Cluster Member Matrix(CMM) Clustering을 통한 유전자 발현 counting. De novo assembly를 통해 각 cluster(consensus sequence) 마다의 NGS reads를 조직별로 counting 하여 Digital Expression Profile(DEP)의 초기데이터인 clutser member matix를 완성한다.
A. Library Normalization #
특정 라이브러리가 다른 라이브러리들에 비해 유독 많이 시퀀싱되어 reads의 양이 많다면, 클러스터링을 통해 얻어진 클러스터 내의 reads 또한 다른 라이브러리에 비해 많이 나타날 것이다. 이는 실제 세포내의 발현 양이라기보다는 데이터 세트 자체의 시퀀싱 개수가 많아서 생기는 것이므로 라이브러리별로 특정 유전자가 그 조직에서 얼마만큼의 발현이 이뤄졌는지를 비율을 통해 나타내야 한다. 따라서 특정 클러스터의 reads 개수에서 그 라이브러리 전체 reads 개수 만큼을 나눠주는 정규화방식이다.
B. Unigene Normalization #
Library Normalization 수행으로 각 라이브러리에서의 발현 비율을 통해 unigene의 발현 정도를 얻을 수 있다. 그러나 이때 House-keeping 유전자의 경우에 늘 많이 발현되는 유전자이므로 전체적으로 발현 비율이 높다. 반면 그렇지 않은 유전자의 경우 수치가 전체적으로 낮게 나타난다. 이럴 경우, 수치상의 차이가 너무 크기 때문에 라이브러리별 혹은 컨디션별로 유전자의 발현 패턴을 보고자 할 때 너무 높은 발현 수치로 인해 상대적으로 낮은 수치로 일정 패턴을 갖는 유전자의 의미는 퇴색되어진다. 이러한 점을 정규화 하기 위해 median value로 나눠주거나, log ratio 취하여 유전자간 수치적 차이를 최소화 한다. Median value 정규화 과정은 그림 3에서 보는 것과 같이 각 클러스터(unigene) 별로 1차 library 정규화 결과 값들을 대상으로 그 중간 값인 0.000341853(media value)로 나눠준다. 그러면 중간 정도의 발현 값을 보이는 라이브러리인 ‘ZG’ 에서는 값이 ‘1’이 나오고 되고, 세포내 전체적인 평균 발현 보다 높은 발현은 ‘1’보다 높은 수치로 정렬되며, ‘1’ 이하는 낮은 발현을 나타내게 된다. 이렇게 두 단계의 정규화 수행 후 최종적인 DEP를 완성하게 된다.
그림 3. Digital Expression Profile (DEP)] Cluster Member Matrix(CMM)을 바탕으로 두 단계의 normalization 과정을 통해 표준화된 expression value로 환산 된다.
이렇게 완성된 DEP는 다양한 발현 패턴 분석에서부터 조직 특이 유전자 그리고 Ortholog 분석에도 이용된다.
Expression Pattern Analysis #
DEP(Digital Expression Profile)를 활용하여 마이크로어레이 분석과 동일하게 다양한 조건에서의 유전자 발현을 분석한다. Fold change를 이용한 DEG 산출 및 hierarchical clustering, self-organizing maps, K-means clustering, PCA(Principle component analysis) 분석을 통해 의미 있는 발현 패턴들을 정교하게 표현하기도 하고, 이들 패턴들 간의 관계를 분석하기도 한다. 그림 4에서 보여 지는 것과 같이 모든 조직에서 일정한 비율로 발현되는 유전자는 House- keeping 유전자의 후보가 될 수 있으며, 유독 특정 조직에서만 발현되는 유전자들도 관찰 할 수 있다.
그림 4. DEP를 활용한 유전자 발현 패턴 분석.
Hierarchical clustering을 수행하여 동일한 패턴을 보이는 유전자들의 클러스터링
조직 뿐만 아니라 약물에 대한 반응성 실험을 수행 할 경우에도 time-series 라이브러리를 제작하고 여러 샘플을 한 번에 시퀀싱 할 수 있는 Multiplex Identifiers(MIDs)를 이용하여 단 시간에 많은 데이터로 이 같은 분석을 진행할 수 있다. Roche 454의 경우 192에서 최대 2300 개의 샘플을 한 번에 로딩하여 시퀀싱이 가능할 정도로 유연성이 있으므로 다양한 조건을 대상으로 분석에 활용할 수 있는 이점이 있다.
이러한 발현 분석은 종전의 마이크로어레이 분석 프로그램으로 분석이 가능하다. 대표적인 예로 Agilent사의 GeneSpring GX을 들 수 있다. 기본적인 통계학적 분석으로 ANOVA 분석, multiple testing corrections, FDR prediction 그리고 Tukey and Student-Newman-Keuls post hoc test 가 가능하며, 그래픽 데이터 표현으로는 2D/3D scatter plots, 2D dendrograms, 염색체 지도, pathway 다이어그램 그리고 분류별 보기 기능으로 다양하게 표현이 가능하다.
그림 5. GeneSpring GX
유전자 발현데이터 분석 프로그램으로 다양한 통계 분석과 가시화 프로그램이 수행된다.
발현 패턴 분석으로는 Gene trees, Experiment trees, Self-organizing maps, K-means clustering, QT clustering, 그리고 PCA 분석이 가능한 것으로 알려져 있다. 이 모든 기능은 데스크탑 컴퓨터에서 분석이 가능하며, 사용자 편의성이 강조된 인터페이스로 구성되어 있어, 비전문가도 쉽게 분석을 수행할 수 있다.
Tissue Specific Gene Analysis #
조직 특이 유전자는 특정 조직에서 그 유전자의 세포내 평균 발현양 보다 특이적으로 높게 발현 되어 특정 조직의 성격을 결정지을 수 있는 유전자를 선별하는 것을 목적으로 한다. 따라서 NGS reads를 이용하여 분석하고자 할 때에는 조직별 라이브러리 제작 시 아무런 영향을 주지 않은 정상적인 발현 상태의 라이브러리를 제작해야하며, Normalization이나 Subtraction과 같은 인위적인 선출 방식의 시퀀싱이 아닌 무작위적인 방식의 시퀀싱이 진행되어야만 한다. 무작위 적으로 일어나는 사건에 대한 확률 값을 계산하므로 포아송 분포(poisson distribution)를 이용한 Audic’s test를 통해 조직 특이 유전자를 선별한다. 다음은 Audic’s test를 이용한 확률 값을 구하는 수식이다.
이 때, 다양한 cutoff 파라미터를 통해 확률적으로 유의한 유전자를 선별하는데, p-value, Enrichment, Frequency 그리고 클러스터 내의 minimum reads count 등을 이용 할 수 있다. 이중 p-value는 유의 수준을 나타내는 것으로 0.001의 cutoff는 유의 수준 99.9%를 의미하게 된다. 그러나 조직 특이 유전자 선별을 위해 한 두 개의 유전자를 대상으로 연관성 분석이 진행 되는 것이 아니라 앞서 언급된 파라미터를 통과한 모든 클러스터를 대상으로 연관성 분석이 진행하므로 검사의 개수가 증가할수록 임의로 발생하는 오류 또한 증가하여 p_value의 의미가 감소하는 문제점이 발생하게 된다. 이를 극복하기 위해 Bonferroni correction, False Discovery Rate(FDR), 그리고 Permutation test와 같은 다중 검정을 수행하게 된다.
실제 분석을 위해 앞서 작성한 Cluster Member Matrix(CMM; DEP작성시 초기 matrix)를 이용하여 각 클러스터별로 x, y, N1, N2을 지정하여 계산할 수 있다. 예를 들어 그림 3의 표에서 클러스터 1의 유전자가 ‘OC’ 조직에 특이적인 발현 양을 보이는지를 검사 한다고 했을 때 대상 조직의 reads 개수인 y 는 ‘10’이 되고 그 외 나머지 조직에 해당하는 reads 개수인 x 는 ‘82’가 된다. 그리고 N2, N1 은 각각 해당 조직 전체 reads 개수와 나머지 조직의 전체 reads 개수인 ‘55,840’과 ‘184,301’에 해당한다. 이러한 분석은 하나의 클러스터마다 검사해야할 조직 개수 만큼 수행된다.
Ortholog Analysis, Differentially Expressed Genes(DEGs) Functional annotation #
서로 다른 종에서 동일한 기능을 수행하는 유전자들의 관계를 Ortholog 유전자라고 한다. 일반적인 분석법으로는 서열 유사성을 근간으로 분석이 진행된다. COG 알고리즘에 의하면 최소 세 종 이상의 유전자가 서로 top match로 연결이 될 때 비로소 하나의 ortholog 그룹을 형성하는 것으로 분석하고 있다. 그러나 이러한 분석법에는 어느 정도의 노이즈가 존재 하므로 이를 해결하려는 시도로 여러 가지 분석법이 소개 되었다. 그중 서열 유사성에 synteny를 접목한 분석법과 발현 패턴을 이용한 분석법이 있다. 여기서는 발현 패턴을 이용한 분석법에 대해 알아보자.
동일한 기능을 수행한다면 동일한 발현 패턴으로 조절될 것이라는 가정 하에 일정 수준 이상의 서열 유사성을 갖는 유전자들끼리 DEP를 활용한 Pearson’s correlation coefficient를 분석하여 ortholog 유전자를 찾는 방법이다. 다음은 Pearson's correlation coefficient 인 ‘r’을 구하는 수식이다.
두 단계로 진행되는 분석으로 일차 분석은 서열 유사성 검사이다. 단백질 수준으로 BLAST를 수행하여 일정 수준 이상의 homology를 갖는 유전자는 모두 분석 대상으로 한다. 그림 3의 unigene 1과 가장 서열상 유사한 유전자를 human을 대상으로 분석하고자 할 때 보통 E-value를 파라미터로 하여 일정 수준(‘1e-10’)을 통과하는 유전자를 2차 분석 대상자로 분류한다. 2차 분석에서는 DEP를 활용한 Pearson’s correlation coefficient를 분석한다.
그림 6. DEP를 활용한 ortholog 유전자 분석.
Tomato와 arabidopsis 유전자 간의 DEP를 5개의 조직에 대해 작성하여 서열 유사성과 발현 패턴을 비교하여 Ortholog 유전자를 분석하였다. (a) 서열유사성으로는 tomato의 TC-116371 (peroxidase)과 arabidopsis의 TC- 183341 이 가장 유사하지만 발현패턴과 함께 비교하면 TC183911이 Ortholog 유전자가 됨을 확인수 있었다. (b), (c) 모두 동일한 결과를 보이고 있다.
단, DEP의 라이브러리 구성이 두 종간에 서로 일치하여야 한다. Cluster 1(Unigene 1)의 DEP와 human의 후보 유전자 DEP를 1:1로 correlation 분석을 진행하여 coefficient value ‘r’이 ‘1’에 가까울수록 서로 유사한 상관관계를 가지며, ‘-1’에 가까울수록 반대되는 상관관계를 가지고, ‘0’에 가까울수록 상관관계가 없는 것으로 해석한다 이러한 결과는 그림 6의 예제에서 보다 정확한 Ortholog 분석 결과를 보여 주고 있다.
Differentially Expressed Genes (DEGs) Functional annotation #
Gene Ontology(GO)와 같이 Organism 내의 모든 유전자를 카테고리화하여 유전자 구성이 어떻게 되는지를 분석하는 것은 유전자의 기능 분석에서 일반적인 분석법 중 하나이다. 이러한 카테고리 구성 방식은 GO와 함께 MIPS의 FunCat도 많이 이용되고 있는데, 이들을 이용하여 DEG와 같은 특정 요건으로 묶인 유전자들의 기능이 어떤 카테고리에 집중되어 있는지를 hypergeometric test를 이용하여 분석한다. Hypergeometric test의 확률 값을 구하는 수식은 다음과 같다.
여기서 ‘N’은 Organism 전체의 유전자 개수를 의미하며 ‘n’은 DEGs의 개수를 의미 한다. 그리고 ‘K’는 전체 유전자 중 특정 카테고리 X(예:GO:00000345)에 해당하는 유전자 개수 이며, ‘i’는 DEGs 그룹 중 특정 카테고리 X에 해당하는 유전자 수를 의미한다. p-value cutoff와 enrichment를 이용하여 통계학적으로 유의한 유전자의 기능을 규명한다. 이러한 분석은 다중 검정을 통해 발생할 수 있는 오류를 보정 하게 된다(조직특이 유전자 분석 참조).
Text - mining을 통한 대사회로 분석 #
대사회로 분석은 세포내 유전자들이 생물학적으로 기능이 유사하거나 동일한 조절 기작을 통해 동일 시간상에서 유사한 발현 양상을 보일 것이라는 가정 하에 이루어진다. 선별된 유전자들(DEGs) 사이에서의 대사회로 분석을 통하여 대사회로 내에서 유전자들의 발현양상에 따라 up-regulation 혹은 down-regulation 되는지 분석할 수 있다. 또한 이들 간의 signal 관계가 upstream에 존재하는지 down- stream에 존재하는지 여부를 분석할 수 있다. 이러한 분석이 가능한 프로그램으로는 Ariadne사의 Pathway Studio가 있다.
그림 7. DEG 유전자의 pathway 분석
DEGs를 이용한 pathway 분석으로 유전자간의 조절 관계와 upsteam, downstream 단백질을 GUI를 통한 그래픽으로 확인이 가능하다.
Pathway Studio는 차등발현유전자들을 조절하는 상위 조절인자를 분석하거나 차등발현유전자들이 공통적으로 작용하고 있는 질병, 세포내 프로세스 등을 분석할 수 있는 유용한 프로그램이다.
Promoter 영역 분석을 통한 발현 조절 메카니즘 분석 #
선별된 유전자에 대해서 유전자의 발현 양을 조절하고 세포내의 항상성 유지를 위해 여러 유전자들 간의 긴밀한 네트워크를 통해 이뤄지는 유전자 조절 메카니즘을 분석한다. 유전자의 구조 중에서 특히 유전자의 기능에 중요한 영향을 미치는 부분은 유전자의 발현을 조절하는 프로모터 영역이다. 프로모터를 포함한 유전자의 upstream에 존재하는 전사인자 binding site의 예측을 통해 유전자의 발현 조절이 어떠한 메카니즘을 통해 이뤄지는지를 분석한다.
그림 8. Upstream regulation 분석
TransFac을 활용한 DEGs의 upstream에 존재하는 공통된 transcription factor를 탐색
대표적인 프로그램으로 BIOBASE사의 TRNASFAC을 꼽을 수 있다. 실험적으로 검증된 전사인자들로 생물 전문가의 꼼꼼한 검증을 통해 구축된 데이터베이스는 현재 인간을 중심으로 식물, 효모R에 이르기까지 계속해서 확대 되고 있다. TRANSFAC의 서브 프로그램인 Patch와 Match를 활용하면 미지의 유전자 upstream 서열의 binding 가능한 전사인자를 검색할 수 있고, 이는 유전자 네트워크에서의 생물학적인 의미를 찾을 수 있는 기초 데이터가 된다.
RNA-Seq Analysis #
Serial Analysis of gene Expression(SAGE), Cap Analysis of gene expression (CAGE), 그리고 Massively Parallel Signature sequencing(MPSS)은 특정 유전자의 발현 양 정보를 얻고자 하는 목표로 수행되는 방법들이다. 이러한 방법들은 많이 이용되고 있지만 Sanger 방법에 바탕을 둔 것으로 높은 비용과 짧은 reads는 reference 서열에 유일하게 매핑하기 힘들다는 문제점을 가지고 있다. 이러한 문제점들을 극복하기 위한 방법으로는 유전자와 엑손의 발현 및 발현된 유전자의 각종 변이 등을 한 번에 연구할 수 있는 RNA-Seq기술이 있다.
표 1에서 보는 것과 같이 RNA-Seq을 분석 할 수 있는 프로그램에는 여러 가지 소프트웨어가 있는데 그 중에 CLC Genomics Workbench는 Annotation된 Reference 유전체 서열과 mRNA 시퀀싱 reads를 바탕으로 새로운 엑손의 발굴뿐만 아니라 유전자 발현 레벨을 계산할 수 있다. RNA-Seq 분석은 몇 가지 단계로 수행된다. 먼저, Reference 서열에서 모든 유전자를 추출한다. 이 때 유전자 서열의 다른 annotation들은 보존된다.
다음으로 영역 주변의 엑손-엑손 경계를 추출한다. 그 다음으로 모든 엑손-엑손 junctions plus에 대한 Reference assembly가 수행된다. 이 assembly로부터 각각의 유전자에 대해 발현 수치가 계산되고 putative exon을 확인할 수 있다. 발현 수치는 RPKM(reads per kilobase of exon model per milion mapped reads)방법으로 측정된다(그림 9).
그림 9. RPKM방법
(a) exon-exon junction+gene 서열을 reference 서열로 한다.
(b) NGS reads의 reference assembly를 통한 alignment를 통해 새로운 각 엑손 단위 혹은 유전자 단위의 발현양을 확인한다.
Alternative splicing Analysis #
한정적인 유전자를 좀 더 다양하게 활용하기 위한 방법으로 Alternative Splicing이 이뤄지고 있다. 그러나 어느 유전자에서 어느 정도 Alternative Splicing이 이뤄지는지는 명확하게 밝혀진 바가 없다. NGS 이전 시대의 ESTs와 기타 실험적인 분석으로 약 72%에 해당하는 human 유전자가 Alternative Splicing을 하는 것으로 알려졌었으나,
최근 NGS를 이용한 분석으로 약 94%의 유전자가 해당하는 것으로 밝혀졌다. 뇌, 간, 근육, 폐의 조직으로부터 분석한 결과 2개 이상의 mRNA를 만들어 내는 유전자가 92-94%에 해당한다는 것이다. 이후 이를 뒷받침하는 자료로 15개의 조직으로부터 분석한 결과 94% 유전자가 Alternative Splicing이 이뤄진다고 발표 되었다.
현재 까지 밝혀진 Alternative form은 대부분 8가지 형태로 분류 되고 있다(그림 10). 가장 흔한 형태는 Exon이 카세트 형태로 들어갔다 나갔다 하는 Exon skipping이며, 그 외에도 Intron이 Exon처럼 읽혀지는 형태와 UTR 영역의 Variation도 많은 부분 차지한다. 이러한 형태는 조직, 발달 단계, 그리고 기타 환경적인 자극에 의한 대처로 서로 다른 형태의 mRNA를 발현하여 세포내 항상성을 유지하는 것으로 보고 있다.
실제 분석을 위해서는 위에서 언급 했듯이 다양한 조건에서 다양한 형태로 발현되므로 이를 반영하여 최대한 다양한 조건의 mRNA를 수집하여 이를 genome과 mapping하고 패턴을 분석하는 것이다. 그러기 위해서는 short-reads 보다는 long reads 플랫폼을 이용한 mRNA 시퀀싱이 좀 더 많은 정보를 담고 있으므로 유용하다. 이후 reference assembly를 통해 유전자 영역에서의 Transcriptom alignment 형태를 분석하여 Alternative 분석을 수행한다(자세한 분석 방법은 2-4-1 C. Alternative Splicing analysis 참조).
그림 10. Alternative splicing 형태
출처 : http://insilicogen.com/blog/45
출처 : http://insilicogen.com/blog/46
출처 : http://insilicogen.com/blog/47
출처 : http://insilicogen.com/blog/48
출처 : http://insilicogen.com/blog/49
출처 : http://insilicogen.com/blog/50
출처 : http://insilicogen.com/blog/51
Incoming Links #
Related Bioinformaticses (Bioinformatics 0) #
Suggested Pages #
- 0.331 분자생물학 자료형
- 0.025 splicing
- 0.025 Indel
- 0.025 Whole exome
- 0.025 안티코돈
- 0.025 포도막흑색종
- 0.025 Gene panel
- 0.025 Sanger법
- 0.025 Next-generation_sequencing
- 0.025 de Bruijn graph
- More suggestions...